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Abstract—Through the principle of total potential energy the equilibrium equations and associated
boundary conditions for buckling analysis of pretwisted columns are derived and analytically solved.
For statically determinate cases, solutions are obtained from two second-order differential equations
in terms of bending moments. However, for statically indeterminate cases, force displacement
relations must be invoked and solved along with the equilibrium equations. Results for four typical
cases, two statically determinate and two indeterminate, are provided and the effect of the natural
twist on the buckling loads is investigated.

1. INTRODUCTION

Consider a prismatic column with a rectangular cross-section, subjected to an axial load P.
When P reaches a value equal to the first buckling load of the column, the column will
buckle in its weaker plane. Let the second moments of area for the two flexural planes of
the column be such that the column’s second buckling mode (in 3-D space) takes place in
the stronger plane. Now consider another column of the same cross-section and length but
one which is naturally twisted. The effect of the twist is to couple the weak and the strong
flexural planes. It is then intuitively evident that the first buckling load of the naturally
twisted column will be higher than that of the prismatic column. Thus pretwisting has a
beneficial effect on the buckling of columns. Some thought will reveal that the coupling of
the two planes has the effect of reducing the second buckling load of the column. Thus
twisting has a detrimental effect on the second buckling load. However, in practice the
second buckling load is of little interest and one may conclude that pretwisting has a net
beneficial effect.

Now a number of interesting questions can be posed. To what extent does the pre-
twisting increase the first buckling load? Does the buckling strength increase with the
pretwist angle monotonically? Does it level off asymptotically? Can the decreasing second
mode buckling load become equal to the increasing first buckling load for certain pretwist
angles? In this study some of these questions are addressed.

The stability of pretwisted columns was first investigated by Ziegler (1948). In this
study Ziegler derived the buckling equations for simply supported Euler columns. Later a
more detailed analysis was outlined by Ziegler (1951) wherein the governing equations were
derived for two different coordinate systems and a more complete treatment of the different
possible boundary conditions was given. Liischer (1953) solved Ziegler’s equations for the
case of a cantilevered column. Leipholz (1960) outlined a solution procedure for general
boundary conditions. Frisch-Fay (1973) derived Ziegler’s equations from a purely geometric
viewpoint and confirmed Ziegler’s original solution. In recent years most of the inves-
tigations on the buckling of pretwisted columns have been limited to finite element methods.
Gupta and Rao (1978) have analysed the stability of tapered and twisted Timoshenko
beams, while Celep (1984, 1985, 1986) has investigated the dynamic buckling of pretwisted
beams under nonconservative loads.

In the present paper the governing equations for buckling of pretwisted columns are
derived from an energy point of view and are solved analytically. Results for four typical
boundary conditions are provided and discussed.
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2. THE GOVERNING EQUATIONS

For conservative buckling problems energy methods provide a systematic approach
for deriving the equilibrium equations and the associated boundary conditions. The defi-
nition of energy terms requires the relationships between force and kinematic quantities.
These so-called constitutive equations were derived in some detail in Tabarrok and Xiong
(1989). For the specific case of pretwisted columns they take the following forms

m, = EI,(87—140,) (1)
m, = E[,(63,+1,0)) )
g\ = kGA(W, —tou;—6,) 3
q; = kGA(u2 +10u,+6)) 4)

where m and ¢ denote the moment and shear force quantities, respectively, and 8,, 8, are
the (bending) rotations of the cross-section about the principal coordinates of the column
(see Fig. 1). Likewise u,, u, are the displacements along x,, x,, respectively, 7o, denotes the
natural twist of the cross-sections, and k is the shear coefficient.

It is worth noting that the above equations represent the generalizations of the Timo-
shenko-type constitutive equations to pretwisted beams. Thus the rotations are independent
of the slopes of the centreline, namely (—u5—7ou;) and (u)—7tou;). This independence
allows one to determine shear strains as

Y1 = Uy —Touy—0, &)
Y2 = wr+Tou +6,. (6)

The strain energy of the beam which is made up of fiexural and shear components may be
expressed as

1 (!
U= EJ; {EN(07 —1082)* + EL,(87+146,)*

+kGA(u'. —Told2 —“02)2+kGA(u,z+Tou| +01)2} ds. (7)

Fig. 1. The principal coordinates of the pretwisted column.
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The potential energy of the external force may be expressed as

1
W= %L (PGt — tot43)* + P(—ty — 10uy)?)} ds. ®

Now noting that the total potential energy is given by Il = U— W we may carry out
variations of IT with respect to 8, 8,, ¥, and u, to find the system equations:

oMl =8U—-oW
[
== J; {60[[—EI|(9’| —1.’092)'+10E12(0'2+109,)+kGA(u'2+rou| +01)]

+592[—E12(9'2+1:09,)’—1:0EI| (0,| —-1.'002)-—kGA(u'l —TolUy —02)]
+0u,[—kGAW, —tquy—60,) +10kGA(Us +Tou, +6,)
+ P(uy ~Tou2)" — 1o P(u2 + Tot4y)]
+6u2[-‘kGA(u’2+fou| +01)’—T0kGA(u'l —Tol2 —02)
+ Py +touy) + 1o P(uy — Tou,)]} ds
+ {EI] (0'. —7002) 501 +EIz(0’2 +1,'001) 602
+[kGA(U) —Touy — 0;) — P(u) — Tou,)] du,
+ [kGA(uy +Touy +6,) — P(u3 +ou1)] S} . 9
Thus the governing equations in the domain 0 < s < [ are given by
[kGA(uG —Told2 —02)—P(u’l ‘-Touz)]l—'to[kGA(u,z +1.’0u1 +9|)—P(u’2+'tou])] =0 (10)
[kGA(Us+ touy +0,) — Py +1ou))] +1o[kGA(U) — Tou; — 0;) — P() —Tou2)] =0 (11)
EIl(0’| —’1'082)"-70E12(0’2+1091) —kGA(u’z'l"Toul +01) =0 (12)
EL(03+4100,) +1,El (67 —100,) +kGAU| —1ou;—0,) =0 (13)

and the associate boundary conditions at s = 0 and s = / are found as

EIL(07—1,6,) =0 or 6, is prescribed (14)
EL(03+1,6,) =0 or 0, is prescribed (15)
kGA@W) —1ouy;—05)— P(uy—1ou;) =0 or u, is prescribed (16)
kGA,+1ou,+6,)—P(uy+1ou,) =0 or u, is prescribed. an

By using the constitutive equations (1)—(4) we can readily show that the governing equations
in effect express the following equilibrium equations

[q1— P\ ~—7ou3)] —T0lq2 — P(u2+Touy)] = 0 (18)
[g2~P(uz+1ou1)) +tolg — P(u) —Tou2)l = 0 (19)
m’. —ToMar—q) = 0 (20)

m’2+‘!om|+q1 =0, (21)
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For slender columns it is reasonable to neglect the shear strains. This requires a con-
straint relating the rotations to the centreline slopes [see eqns (5) and (6)]. If 7, and y, are
set equal to zero then from eqns (5)-(6), we have

9[ = "ulz“foul (22)
82 = u'l —Toliz. (23)
In this case, only m,, m, and u,, u, remain as independent variables. Thus the shear

forces gq,, ¢, may be eliminated from the equilibrium equations (18)—(21) yielding the
following two second-order equations in terms of m,, m,

m’y+2tom, -mz(ré—- E}; ) =0 24)
P
m —2tom’s —m, (té - EI_,_) =0. 25

The force-displacement relations for this case may be obtained by substituting eqns
(22)—(23) into eqns (1)-(2), i.e.

m; = EI](""“"Z? "ZTou’l +t%u2) (26)

my = EL(u] — 2touy — t3uy). @7

3. SOLUTION METHODS

Of the various combinations of boundary conditions, two leave the column in a
statically determinate state. These are the pinned—pinned and the clamped-free ends. For
these cases solutions may be obtained from the equilibrium equations directly. For the
clamped-pinned and clamped—clamped boundary conditions the column is statically inde-
terminate—once in the first case and twice in the second. For these cases the satisfaction
of the equilibrium equations is necessary but not sufficient. The force-displacement relations
must be invoked to obtain solutions for these indeterminate cases.

Consider now the equilibrium equations. For the case of the Euler—Bernoulli model
we showed that these are as given in eqns (24) and (25). The auxiliary equation for eqns
(24) and (25) may be shown to take the following form

D*+aD*+B=0 (28)
where
P P

= F J vp— —_
a (2ro+ iT + EI,) (29)

P P

F—3 2 —— ——— 2 — —

b= ("‘ Ez,)("’ EIZ)' (30)

The solutions for eqns (24), (25) take different forms depending upon whether g > 0,

B =0o0rB <0.For # > 0 the four roots of the auxiliary equation are found to be imaginary
yielding the following solutions

m; = ¢; cOs A 5+c, sin A;5+¢3 cOs Ays+4¢4 sin A,s a3y

my =v,c, Sin A;5—v;C; COS 415+ V,C; 5N A35~vyc4 COS 43S (32)



where

and
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& az 1/27}1/2
w=[3-(5-1) ]
2 172712
e i)

. _ Gi-3dd—PIEI)A,
' 21,(t3—PJEL)
. o M=33—PIEIL,
? 7 2t4(r3—P/EL)
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(33)

(39

(33)

For B = 0, the auxiliary equation has two roots equal to zero and two imaginary roots.
Thus in this case the solutions are as follows:

when P, = t3EI,

where

when P2 = ngfz,

where

m; = ¢y +Cy84C3 COS A3s+¢, Sin 435

My = V30~ V40 sin 43.33+V4€4 cos igS

Ay = (@)"?
_ 2%
" ti—PJEI,

Ve = 21013—2,;/21.'0
« T%—P/EI;

V3

My = —VsCy+ Vs Sit A35— V40, COS Ass

my = ¢, +C35+¢y COS A3s+¢, sin ;s

- 2‘!0

" 12— P/EI

ve = 2‘1’04&3 —13/2':,3
¢~ T ¢I—PJEI, ’

Vs

(36)
3N

(38)

(39

(40)

@41

42)

For B < 0 the auxiliary equation has a pair of real roots and a pair of imaginary roots
yielding the following solutions

m, = ¢, cosh A,5+ ¢, sinh A5+ ¢; cos As5+¢, sin A8

m, = vyc; sinh A,5+vycs cosh A s+ vye; sin dss—vge, cos Ass

where

a: 172 a]uz
he= [(‘r ) "3

43)

@4

45)
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2 12 12
e[

_ (Ai+3t3+P/EI) 4,
1= Tt (3= PJEL)
_ (=33~ P/EL),
V8 = Tt 2= P/EL)

In the above solutions the constants ¢, ~ ¢, are to be determined from the boundary
conditions.

and

@7

3.1. Statically determinate cases

(a) Pinned-pinned column
For this case the boundary conditions are

m0)=m()=0
m,(0) = m,(/) = 0. (48)

The satisfaction of these boundary conditions requires the vanishing of the following
determinants.

Forf>0
1 0 1 0
- 0 _
det 1= |° " "2 (49)
cos Al sin 4,/ cos Ayl sin 4,/
LA sin l]l -V, COs l]l Vs, sin ;.21 —V, COS 121
Forf <0
1 0 1 0
0 -
det2=|° ' ' (50)
cosh A,/ sinh A,/ cos Asl sin As/
Vs sinh 141 V7 cosh 141 Vg sin /..51 — Vg COS 151

For a column of particular geometry (/, I,, I,, 7o) and material (£) the quantities « and f
may be computed, for various values of t,, from eqns (29), (30). From these the values of
4, to A5 and v, to v may also be determined. Finally, the substitution of these quantities
into det 1 and det 2 allows one to determine the loads for which det 1 and det 2 vanish.
These loads are the critical loads.

It is worth noting that both det 1 and det 2 vanish for f = 0 {see eqns (33), (35), (45),
47)]. However, as noted earlier these determinantal equations do not hold for the singular
case of f = 0, i.e. the vanishing of det 1 and det 2 for values of P which render § = 0, do not
necessarily indicate a buckling load. To check this case one must examine the determinants
associated with § = 0. These are as follows:

for P| = fzoEII
1 0 1 0
det3= |0 7 0 v (51)
1 I cosi,l sin A,/
0 vy —vgsin A3/ v, cos A,/
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Fig. 2. Strength ratio vs total twist for pretwisted columns— (a) pinned-pinned ; (b) clamped—free ;
(c) clamped-clamped ; (d) clamped-pinned.

for P, = 13EI,

0 -—Vs 0 —Vs
1 0 1

det 3 = 0 . (52
0 —vs vgsin Al —vgcos A5l

1 1 cos A,l sin A,/

For a given 14, the vanishing of B fixes the value of P. For these values, det 3 can be
evaluated and if it is found to vanish, say for P,, then P, is indeed a critical load, otherwise
it is not. The same holds for P,.

To bring out the effect of 7, on the buckling strength of the columns it is instructive
to compute and plot the ratio of the critical loads of the twisted and prismatic columns
against the total angle of twist, for a column of given / and I,/I,(= p). Such a plot is
given in Fig. 2a. For this column I,/I, = 2.

This plot exhibits the expected increase in the buckling strength for the first mode as
the angle of twist is increased and a more rapid decrease in the buckling strength of the
second mode. Close to 360° total twist, there is a confluence of the first and the second
buckling modes. Thereafter the strength for the first buckling mode drops off slightly while
that of the second mode increases slightly. This pattern is repeated, with smaller difference,
for larger angles. These findings are in agreement with those reported by Frisch-Fay (1973).

In the limit as the angle of twist becomes quite large the first and the second buckling
modes become coincident. From the plot of the strength ratio one can see that the asymptotic
value of the first buckling load, at the large angles of twist, is 33% higher than that of the
prismatic column, where I,/I;, = 2. This can be deduced as follows. For large t, the buckling
equations may be expressed as

m s _ M2
—EZ: and u.-—EI"

where I,, is the average second moment of area of the cross-section. Clearly

3--'l+l or [ -21'12
L, I, I YL+

uy = —

Thus for I,/I, = 2, we find I, = 4/31,.1
t This point was raised by the reviewer.

SAS 26:1-€
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(b) Clamped—free column
The boundary conditions for this case are

m(l) =my() =0
71(0) = (—my—tom)|o =0
42(0) = (my —7omy)lo = 0. (53)

The imposition of these boundary conditions leads to the following determinants

forf>0
cos 4,/ sin 4,/ cos Ayl sin A,/
det 1 = vy sin‘/‘ql —v,c08 A v, sin./‘.zl —v; Cos Ayl ’ (54)
—(vid+10) O ~(v2ha+19) O
0 (Ai+1ov) O (A2 +70v2)
forf<0
cosh i,/ sinh 4,/ cos Asl sin Ag/
det 2 = v, sinfl Ad  vycosh A4 vy sin‘}.,I —vg COS Asl , (55)
—(viis+T) O —(vs4s5+719) O
0 (Ae—7tovy) O (As+10vs)

for f =0, when P, = t}EI,

| cos A,/ sin A,/
det 3 = 0 V3 —v,sin 43l vgcos A3l , (56)
-7 0 V4A.3—'To 0
0 1—1.'0V3 0 AJ“'TQ‘Q
for B = 0, when P, = t3EI,
0 —Vs Vs Sin /131 - Vg COS 2.31
det 3= ) cos A;l sin A,/ 57
0 —1+‘EOV5 0 —}.3+tov6
_To 0 Vle—To O

For a column of geometry as given for the first example a plot of buckling strength ratio
against twist angle is given in Fig. 2b. Once again the salient features of this plot are the
increase in the buckling strength of the first mode and a larger decrease in that of the
second mode. For this case though the confluence of the first two modes appears to occur
asymptotically as the total angle of twist is made very large.

3.2, Statically indeterminate cases

As indicated earlier for the clamped-pinned and clamped—clamped cases, the force—
displacement relations must be invoked. These relations are given in eqns (26) and (27).
On eliminating 4, from eqns (26) and (27), we find the following differential equation

uy” 2t +rouy = - — ——— —

(58)

It is necessary to determine the homogeneous and the particular solutions of this equation.
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For the homogeneous solution the equation will have repeated roots given by +it,. Hence

Uy, = a; COS ToS+a; SN T8+ a38 COS TS+ aes Sin 748, 59

To obtain the particular solution, the three cases of §> 0, f =0 and § <0 must be

examined separately. First, let us consider the case § > 0. For this case we may assume a
particular solution of the following form

Uyp = Qs COS A 15+ag sin 4,5+ a; cos 1,5+ a; sin Ass. (60)

Substitution of the expressions for m,, m, from eqns (31), (32) and u,, from eqn (60)
into eqn (58) allows one to determine as ~ a as follows :

as = j1€3, dg = — 10y

@7 = JiCs, Q3 = —[C3 (61)
where
vi(Ai+1d) 21,4
= [ LD 20 [t aegiteet
vy (A2413) 27,4
= (2D 2k ][ piiap, ©

Therefore the general solution may be written as

Uy = a; COS TS+, SiN ToS+A38 COS ToS+a,s sin 148
— ¢y Sin A 84 Copy COS A S—Calty Sin A8+ cou; cOs Ays (63)
where a, ~ a4 and ¢, ~ ¢, are eight undetermined constants.

With the solutions for m,, m, and u, at hand we proceed to determine »,. From eqns
(26), (27) we deduce that

1 m’y m, 2 )
= - " ’ . 64
U, -———213( ————EIZ +21;,~———E)rl +uy +3tu (64)

Substitution of eqns (31), (32), (63) into eqn (64) yields

U, = —a, sin ToS+a, COS ToS—a;3s sin ToS+ Q45 COS ToS

+C1ptsy €OS A1S+cCyps Sin Ay S+C3py COS A5+copy sin Ays  (65)

where
120wk 2__ 3.2 ]
B3 = 73 [EI, T, + 1A (AT —375)
_ 1|2ty vady 2 a2
My = 7] [EI, - Ef; +p242 (A3 —373) |- (66)

By a similar procedure we may obtain solutions for u; and u, for the casesof § =0
and B < 0. For sake of economy in space we simply provide the results as follows:

for § = 0, when P, = 13EI,
U; = a; COS ToS+a; SIN Tgs++ a8 COS ToS+a,s Sin 148

—Cafis+Caflg SIN A35—c g cOS A3s  (67)
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Uy = —a, sin ToS+d, COS TS — @3S SIN T8+ a4 COS To8
+ ZEI EI = § 4 C3 b7 COS A3S+Colhy 5iN A35
i 1
where
27, r§v3)/ .
= |4+ — /1
#s (EI, t &L )|
viAd  2t9d, rﬁn)/ . 212 . 8
= A3—2tdA
He (EI; + EI, I, (A3—2t5435+10)
veds 2t
Hy = (2‘.7;’—+ EI: —ped3 +3t5usls)/ 213

for B =0, when P, = 13EI,

U, = @, COS TyS-+a, SN TS+ a35 COS ToS+Ays SiN T8

‘1 O ¢ Catty SIN AyS—Capty COS Ass
22EL,  T2EL 3ls 3 4l 3
Uy = —a, Sin ToS+a; COS ToS—a35 SiNt ToS+ a4S COS T¢8
—Callg —C3fi1g COS A35+Catdyp SiD 435
where
_ 4 + Vs
o = 3L T T2E],
A3 21v¢ )/
=| = A3+3tdugdy )/ 213
Hio (EI; + I, — ugd3 +3tiusd, 0
forf<0

U, = 4 COS ToS+ay SiN ToS+a,35 COS TyS+a,s Sin To8

+c) i, sinh 4,84 cyp,) cosh Ags—cypty sin Ass+cqlty s COS Ags

U; = —a, Sifl To5+d; COS ToS—a3S SiN TS+ a8 COS T¢8

4¢3 cosh Ays+cppys sinh A5+ c3ptp4 COS AsS+C4ltyq SID Ass

where

[(v,(12—13) 21,4

En= 7(54-12 0)— ;Il‘]/(lHZr%ﬁH?»)
Cvg(A2+12) 2104

pra = | 2 B, 9 _ E‘}l’]/(zz—zr%mra)
(21 2y}

Hiz = EI(: B"'I‘ “1124(‘1‘+3To)]/273

_ v1(A3—13) _ 2td4
Ao =""%rT, El,

(68)

(69)

(70)

()

)]

(73)

(74

(73)

With the general expressions for u, and u, derived, the eigenvalue formulations for
specific cases may be obtained by imposing the related boundary conditions. These take

the following forms:
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(a) Clamped-clamped column
For this case, the boundary conditions are expressed as

u1(0) = u,(I) = u(0) =u2(f) = 0
u1(0) = ui(l) = u3(0) = u3() = 0. (76)

The imposition of these boundary conditions leads to the following determinants :

forf>0
1 0 0 0
0 7o 1 0
0 1 0 0
-1, 0 0 1
det 1 = cos 7yl sin 1,/ Icostyl Isin 1yl
—1o8intyl tocostyl  costol—tolsin 1ol  sin tol4 1ol COS Tol
—sin 1yl cos 1ol —1Isintyl Icostyl
—19c08Tyl —Tgsintyl —sintol—1olcostyl €O Tyl — 1Tyl sinT,l
0 K 0 K
— A 0 —Hal, 0
B3 0 Ba 0
0 M3k 0 Haks an
—u,sin 4,/ Hicosi,l —u,sin iyl U5 COS 4,1
—piAcosA  —pAysindy —ujdacos Ayl —padasind,l
Hicos il u3sin i,/ Hacos iyl Hasin A5l
—p3Asind ]l usd,cosd,l —UaAy Sin Ayl p4dycos Ayl
forf <0
0 0 0
0 To 1 0
0 1 0 0
—1 0 0 1
det 2= cos Tyl sintyl Icostyl Isintyl
—1osintyl ToCOSTel  cOsTol—1olsintyl sin tol+ 1ol cos 1ol
—sin 1o/ cos T,/ —Isintyl lcostol
—19c08Tyl —tosinty] —sintgl—1olcostyl costol—1tolsinTyl
0 By 0 Hi2
Bl 0 —H124s 0
Hi3 0 Hia 0
0 Bisds 0 ks (78)
My sinh 4,/ i coshi,l —py28in Al uy,co8 Asl
Hi1AscoshAd  pyAgsinhdd  —uadscosdsl  —pgadssindgl
uscoshid  py3sinhi,/ Hi4c08 sl Uy, 8in il
Bi3hasinh A0 pisAccoshdd  —piAssindg]l  pydscos gl
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for § =0, when P, = 13EI,

det 3 =

1
0

-1,
cos 7ol
—1osin ol
—sintyl/

—1oC08 7ol

for § = 0, when P, = t}EI,

det 3 =

1
0

-1
cos 74/
—1osin 1,/
—sin 7,/

—1oC08 Tyl

0 0 0
Ty 1 0
1 0 0
0 0 1
sintyl/ lcostyl I'sintyl
T9c08 Tyl  costol—1olsintyl sintol+ 1o/ cos ol
cos 1ol ~-Isintyl lcostyl
—1osintgl —sintyl—1o/costyl cOsSTHl~TolSINTH/
0 ~Hs 0 —Hs
0 0 Hehs 0
1
<2ET, 0 B 0
0 ;2%71' 0 Hahs
0 —Us Hesin A,/ —ugCos Asl
0 0 Hehicos Al pgdisindsl
-T%—é—l—l 311?1: 17008 430 Uasinid;l
0 - T;IT —pzAssin A3l psdicos sl
0 0 0
To 1 0
1 0 0
0 0 1
sin o/ I cos tyl Isintyl
tocostyl  costol—tolsintyl sintol/+ 1ol cOS 7o/
cos 7,/ — Isintyl Icostyl
—1gsintyl —sintyl—~1olcostyl costel—TolsintTyl
- _2!“ 0 0 —Hs
13 ElL
0 - —ugd; 0
T3El,
0 —Hy —Hio 0
0 0 0 Bi04s
1 l .
~E, TEL —pgsin A,/ ~ugCOS A5l
0 - 1—57-1572- —Ugiycos A3l pgAisindsl
0 — Uy —p1oCcosdsl  pyesinisl
0 0 HioAisindsl  pyedscosisl

(9

(80)
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From the vanishing of the above determinants the first two critical loads of a column,
with properties as listed earlier, were determined for various values of 7,. A plot of strength
ratios against total angle of twist is given in Fig. 2c for this case. The plot exhibits the
expected increase in the first mode and a corresponding decrease of the buckling load in
the second mode. The notable difference between these plots and those of the statically
determinate cases is the much magnified waviness in these plots. Evidently for small angles
of twist the first buckling mode is associated with the weaker plane and the second with the
stronger plane. At higher values of angle of twist the first buckling mode may be associated
with the (original) stronger plane and vice versa, see for instance crossings of the plots in
Fig. 2c. At the crossing points the first and second modes of buckling have the same value
of buckling load.

(b) Clamped-pinned column
For this case, the boundary conditions are

1,(0) = 1, () = u3(0) = u(!) = u;(0) = u2(0) = 0
my(I) = EI(—us—2tou, + t3uy)|; = 0
my(l) = EL(u} —2tquy —tduy); = 0. (81

In a similar manner the characteristic determinants may be deduced for this case and
the critical loads may be calculated. For sake of brevity these lengthy determinants are not
listed here. A plot of buckling strength ratios against total twist angle for this case is given
in Fig. 2d.

In this case too the plots exhibit some waviness, the waves for the first and the second
strength ratios are out of phase and they are attenuated at higher values of twist angles.
The curves for the two strength ratios tend to coalesce asymptotically at a value of 33%
above the buckling strength of the prismatic column.

From the determinants given above additional results can easily be generated. For
instance the effect of p (= I,/I)) on the strength ratios may be investigated. Figure 3 gives
typical results for different values of p. Evidently the form of the strength ratio plots does
not change but the value and the location of max and min points of the plots are effected
by p.

Additional results, including some for the Timoshenko model, can be found in Stein-
man (1989) where an efficient program for determination of buckling loads has been
outlined.

4. CONCLUDING COMMENTS

Through the principle of total potential energy the equilibrium equations and associ-
ated boundary conditions for buckling of pretwisted columns have been derived. These
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Fig. 3. Effect of p(J,/I,) on the first buckling mode of a clamped-clamped column.
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equations, which are in the form of four coupled second-order differential equations in
terms of lateral displacements and rotations, take account of shear strains. Accordingly
these equations may be viewed as the generalizations of the Timoshenko beam models to
pretwisted columns. For slender columns the shear strains may be suppressed allowing one
to obtain Euler-type beam equations for pretwisted columns. These may be expressed as
two coupled fourth-order equations in terms of displacements alone.

Through the force-displacement relations the Euler equilibrium equations were ex-
pressed by means of two coupled second-order differential equations in terms of bending
moments. These equations, which are easier to solve, are sufficient for statically determinate
cases. Solutions have been presented for two such cases, namely the pinned—pinned and
clamped—free columns. For statically indeterminate cases the original two coupled fourth-
order equations must be solved. An alternative but equivalent procedure has been employed
in this study and solutions for clamped—clamped and clamped-pinned columns have been
presented.

For all cases analyzed the effect of the natural twist is to increase the first buckling
load and diminish the second. The plots of strength ratios, namely the ratio of buckling
loads for twisted and prismatic columns, versus the total angle of twist indicate a coalescence
of the first and second buckling loads as the total angle of twist increases. Depending upon
the type of boundary conditions imposed these plots exhibit an oscillatory nature. The
oscillations are more pronounced for the statically indeterminate cases.

Beam eigenvalue problems associated with conservative buckling and free vibrations
have some characteristics in common. Thus curves showing increases in the fundamental
frequencies and decreases in the second natural frequency have patterns not unlike those
presented here. A set of such results was presented by Anliker and Troesch (1963).
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